

Sir:

Recently we reported^{1,2)} the synthesis of 3-deoxy derivatives of 5-O-mycaminosyltylonolide and its 4'-deoxy analog, and the new-type of compounds showed stronger antibacterial activities than those for the respective parent compound against pathogenic bacteria including *Haemophilus influenzae* IID 985. To investigate whether much more active substances would result, we decided to attach an alkyl group at the C-2 position of the macrolactone ring. We thought that such derivation might stabilize the macrolactone ring *in vivo*, giving drugs of long duration in human blood. Here we describe the

synthesis of 2-C-methyl derivatives of 3,4'-dideoxy-mycaminosyltylonolide¹⁾ (1).

The key step in this synthesis is to introduce a methyl group with the other parts of the molecule of 1 intact. After many fruitless experiments involving protection of the 2'-hydroxyl group, we concluded that the quantity and basicity strength of the reagent used for activating the C-2 position are the most important. The synthesis was started from 3-deoxy-5-O-(4-deoxymycaminosyl)-2,3-didehydrotylonolide 9,20-bis(ethylene $acetal)^{2}$ (2). After silulation of 2, the 23-O-(tert-butyldimethylsilul) derivative (3) was selectively hydrogenated (at the 2,3-double bond) as described previously^{1,2} (Raney nickel-H₂ in MeOH, quantitative yield) to give 4. The 3-deoxy derivative 4 having a free 2'-OH was dissolved in THF and treated (-70° C, 30 minutes) with excess lithium diisopropylamide (10 molar equivalents for 4; prepared by reacting equimolar amounts of diisopropylamine and butyllithium in hexane). The resulting 2-C,2'-O-dilithio intermediate was then reacted $(-20^{\circ}C \rightarrow 0^{\circ}C)$ with methyl iodide by monitoring with thin layer chromatography. A mixture of two 2-C-methyl derivatives was produced in good yield without methylation of the 2'-hydroxyl and 3'-dimethylamino groups (quarternization). Usual deprotection of the products followed by chromatography gave (2R and 2S)-3,4'-dideoxy-2-C-methylmycaminosyltylonolides (5 and 6) in a ratio of $\sim 2:1$ (total yield based on 4 was 62%). 2R-Isomer (5): Rf 0.20 (TLC with CHCl₃ - MeOH aq 28% NH₃, 20:1:0.5), $[\alpha]_D^{20} + 2^\circ (c \ 1, \text{ CHCl}_3);$ FAB-MS (m/z) 580 $(M+1)^+$, ¹H NMR (CDCl₃) δ 0.94 (3H, t, J=6.8 Hz, 17-CH₃), 1.08 (3H, d, J=6.7 Hz, 18-CH₃) ~1.2 (a mixture of three 3H d, $J = 6 \sim 7.5 \text{ Hz}; 2$ -, 21-, and 6'-CH₃), 2.27 (6H, s, $N(CH_3)_2$, 4.14 (1H, d, J = 7.3 Hz, 1'-H), 5.85 (1H, d, J = 10.4 Hz, 13-H), 6.32 (1H, d, J = 15.8 Hz, 10-H),7.18 (1H, d, 11-H), and 9.71 (1H, s, 20-H). 2S-Isomer (6): Rf 0.26 (TLC with CHCl₃-MeOH-aq 28% NH₃, 20:1:0.5), $[\alpha]_D^{20}$ +15°C (*c* 1, CHCl₃); FAB-MS (m/z) 580 $(M+1)^+$, ¹H NMR (CDCl₃) δ 0.93 (3H, t, J = 7.3 Hz, 17-CH₃), 0.98 (3H, d, $J = 6.7 \text{ Hz}, 2\text{-CH}_3), 1.02 (3\text{H}, \text{d}, J = 6.7 \text{ Hz}, 18\text{-CH}_3),$ 1.20 (3H, d, J=6.1 Hz, 6'-CH₃), 1.23 (3H, d, J=6.7 Hz, 21-CH₃), 2.26 (6H, s, N(CH₃)₂), 4.23 (1H, d, J=7.3 Hz, 1'-H), 5.75 (1H, d, J=11 Hz,13-H), 6.37 (1H, d, J=15.8 Hz, 10-H), 7.18 (1H, d, 11-H), and 9.70 (1H, s, 20-H).

Configurations at C-2 of 5 and 6 were presumed to be R and S, respectively, based on the NOE measurements (by ROESY). Compound 6 showed

Test organism ^a	5	6	1
Staphylococcus aureus FDA 209P JC-1	0.05	0.39	0.1
S. epidermidis IID 866	0.05	0.39	0.1
Streptococcus pyogenes Cook	0.1	0.78	0.2
S. pneumoniae IID 552	0.05	0.39	0.1
Enterococcus faecalis IID 682	0.2	1.56	0.39
Corynebacterium diphteriae A-7	0.1	1.56	0.2
Mycobacterium smegmatis ATCC 607	0.78	>25	3.13
Branhamella catarrhalis CAY 1267	0.2	1.56	0.39
Escherichia coli O-1	6.25	12.5	6.25
Citrobacter freundii NIH 10018-68	3.13	6.25	3.13
Shigella sonnei II 37148	6.25	12.5	6.25
Salmonella enteritidis 1891	1.56	3.13	3.13
Klebsiella pneumoniae ATCC 10031	0.78	1.56	1.56
Proteus vulgaris OX-19	12.5	12.5	6.25
Pseudomonas aeruginosa NCTC 10490	>25	>25	25

Table 1. Antibacterial activity (MIC μ g/ml) of 5 and 6 together with 1.

^a Mueller-Hinton agar, inoculum size 10⁶ cfu/ml, incubation 18 hours at 37°C.

NOE between both 2-H ~ 18-CH₃ and 2-CH₃ ~ 4-H, and 5, only between 2-H ~ 18-CH₃. As C-4 of 1 has S configuration, 2S,4S structure of 6 satisfies the above result. If 6 has 2R,4S structure, it is sterically difficult 2- and 4-methyls come close to 4-H and 2-H, respectively. Details involving the other minor results will be described elsewhere.

Compound 5 showed slightly enhanced antibacterial activity compared with that of 1 against typical pathogenic bacteria, but 6 was much less active (Table 1). This result shows that the 2-C-methyl orientation in the molecule is an important factor for the activity. Other biological experiments are now under study.

In conclusion, we have prepared, for the first time, 2-C-methyl derivatives of a 16-membered macrolide antibiotic. The absolute configuration at C-2 of 5 is proposed to be the same (that is 2R) with that³⁾ of 14-membered macrolide antibiotics such as erythromycin.

Acknowledgment

We are grateful to the members of Physico-Analysis Center and Infection Disease & Immunology Research Laboratories of Yamanouchi Pharmaceutical Co., Ltd. for measurements of ¹H NMR and FAB-MS spectra, and for bioassay, respectively.

Shunji Kageyama*

Yamanouchi Pharmaceutical Co., Ltd., 21 Miyukigaoka, Tsukuba City, Ibaraki 305, Japan

TSUTOMU TSUCHIYA

Institute of Bioorganic Chemistry, 1614 Ida, Nakahara-ku, Kawasaki 211, Japan

(Received March 9, 1994)

References

- KAGEYAMA, S.; T. TSUCHIYA, S. UMEZAWA & T. TAKEUCHI: Synthesis of 3,4'-dideoxymycaminosyl tylonolide, a novel type of macrolide derivative. J. Antibiotics 45: 144~146, 1992
- KAGEYAMA, S.; T. TSUCHIYA, S. UMEZAWA & M. ORITA: Synthesis of 3-deoxy-5-O-mycaminosyltylonolide and 3-deoxy-5-O-(4-deoxymycaminosyl)tylonolide. Bull. Chem. Soc. Jpn. 65: 3405~3411, 1992
- NAKAGAWA, A. & S. ŎMURA: Structure and stereochemistry of macrolides. In Macrolide Antibiotics, Ed., S. ŌMURA, pp. 64~67, Academic Press, Inc., 1984